
20100409 Components of a well formed user story 0b.doc

Writing better Agile ‘Stories’ 

The growth in popularity of agile methods of software development, such as
XP, Scrum and Kanban, has resulted in user stories becoming a popular
method for capturing requirements.

Using requirements development good practice for writing of User Story Cards
provides developers and product owners with a simple means to improve the
understandability of each story. Increasing the understandability will reduce re-
work which will concomitantly increase productivity and velocity and reduce
defect density, etc.

A well-constructed user story describes a feature that represents value in the
eyes of the customer. Requirements at different levels of abstraction can be
expressed as user stories (one of my clients has defined 5 distinct levels of
abstraction, from customer requirements down through product and system
requirements to sub-system and individual software component requirements).
At the lowest useful level, each story is intended to be the smallest unit of
scope that delivers value.

A user story is said to be ‘a promise for a conversation’ – it represents the
developing understanding of needs as customer and development staff work
together. It combines both functional and non-functional requirements.
Associated with each story are acceptance criteria that define when it is ‘done’.

Stories focus on the who, what and why of a feature, not how it is
implemented. They often are written on 5´ x 3´ (127 x 76mm) index cards, to
limit verbosity and to provide a convenient medium. This allows stories to be
considered individually, sorted, displayed on a notice board, etc.

The structure of each story is often based on a template as follows:

As a … [stakeholder role] …
I want to … [perform an action / record some information] …
[With some frequency and/or quality characteristic] … So that
… [description of value or benefit is achieved].

For example:

As a library_user, I want to search for books by title, with speed and
ease-of-use, so that I can find all books with similar titles.

Operational definitions for the ‘fuzzy’ terms ‘speed’ and ‘ease-of-use’ can also
be written on the card, to capture the non-functional requirements.

Unfortunately this template can be a major contributing factor to the known
limitations1 of the agile method which include:-

• Without the accompanying acceptance tests, they are open to interpretation
which makes them difficult to use as the basis for agreement
• They require close customer contact throughout the project which in some
cases may be difficult or may be unnecessary overhead
• Can have difficulty scaling to large projects.
• Rely more on competent developers
• User stories are regarded as conversation starters. Unfortunately they may not
capture where the conversation ended and fail to serve as a form of reliable
documentation of the system.

Many of these limitations are shared by other development methods and so are
not limitations of the Agile development paradigm per say, rather they are
limitations brought about by the lack of adherence to the known good practices
for requirements expression.

Effective natural language requirements2 generally consist of four basic
structural elements:- entities, actions, events, and conditions.

These elements can be used or modified by various cases such as the following:

• Owner. • Actor. • Target. • Constraint.

• Owned. • Action. • Object. • Trigger.

1 Taken from Wikipaedia
2 “Writing Effective Natural Language Requirements Specifications” by William M.
Wilson

20100409 Components of a well formed user story 0b.doc © Simon Wright 2010 Tel. 0843 289 5174
www.measuresw.com

Using these concepts we can re-state the user story template like this:

As a [Actor or Owner – who/what does the action]
I shall [Action – what happens e.g. store, update, send data]
for; [Object – what is acted upon]
on the [Target or Owned – where the output is sent ; recipient or

end state]
with [Performance - frequency and/or quality characteristic]
when [Trigger – causes of action; data receipt/user interaction]
unless / even if

[Constraint – business rule or limiting factor]
So that [Rationale - description of value or benefit is achieved].

In the example, ‘library_user’ is the actor, ‘search’ is an action, ‘books in the
catalogue’ are the object, the ‘computer screen’ is the target, the
performance requirements are ’with speed and ease of use’, the ‘provision of
the book title’ is the trigger, ‘incompleteness’ is the constraint / qualifier and
‘finding books with similar titles’ is the value achieved. The user story
becomes:-

As a library_user I want to search for books in the library catalogue
on the computer screen with speed and ease-of-use
when I provide a book title even if the book title is incomplete
so that I can find all books with similar titles.

The order:

<ACTOR><ACTION><OBJECT><TARGET><PERFORMANCE>

<TRIGGER><CONSTRAINT><RATIONALE>

is recommended but there are other orders that are popular, for example Use
Case descriptions often use the order:

<TRIGGER><ACTOR><ACTION><OBJECT><TARGET>
<CONSTRAINT>

I provide a book title and begin a search for books in the library
catalogue on the computer screen even if the book title is incomplete.

Many user stories are more complicated than this example and no one single
order can suffice but without including these elements the possibility for
misunderstanding is significantly increased.

Another benefit of this template is that it enables an estimate of functional
size to be made. Please see the corresponding white paper by Grant Rule on
Sizing User Stories with COSMIC.

Standardized structured requirement expression enables comparisons across
time, across teams, across projects, and across organisations. Developers,
product owners, and their customers thus have a common way of
communicating so that end user value can be delivered in an effective way.

Simon Wright – SMS Community of Practice Member

Managing Director

SymTech Ltd

April 2010

s.wright@measuresw.com

