

Benefits to the UK
software industry of
successfully
exploiting metrics
and the importance
of the COSMIC-FFP
method to producing
credible metrics

Written by
Charles Symons
Joint Project Leader, the Common
Software Measurement International
Consortium

December 2006

Ref: 02CSCredibleMetrics

Software Measurement Services Ltd

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

The COSMIC FFP Functional Size Measure was awarded a finalists

medal in the 2006 BCS IT Professional Awards. The evidence in this

paper was compiled to support the COSMIC entry, and then used as the

basis for a paper presented at the 2006 UK Software Metrics Association

Conference. The following paper includes revisions made in response to

valuable feedback from the UKSMA audience.

Starting points
There is an age-old idea that ‘you cannot manage unless you can measure’. This
is obviously not true in the software industry. Most software projects are
‘managed’ and efforts are made to improve performance without any proper
measurements at all1. The phrase should really be something like ‘managing
software activities without proper metrics to support decision-making is not
much better than guesswork’.

Any professionally-managed software metrics programme should be able to
monitor and record for each project the three main performance parameters of

 Productivity (= size / effort)
 Speed of delivery (= size / elapsed time)
 Defect density (no. of defects delivered into production / size) – a

measure of Quality

All three performance parameters depend on having a measure of software size
(i.e. of work-output) that is independent of the technology used for the software
and depends only on the required functionality – a ‘functional’ size. Many other
software metrics can be valuable, but these three are the most important and
should always be gathered.

There are three main uses for such performance parameters.

Individual project planning. Organizations need to track all three performance
parameters because they are tradable. For example, speed of delivery can be
increased with more resources, but this usually means lower productivity and
carries the risk of lower quality. You can only begin to understand such trade-
offs and use this knowledge in project planning when you have your own
measurements in your own environment.

Estimating. If software size can be measured from requirements early in a
project’s life, this can be the prime input to a standard project estimating method
or commercial estimating package. Even better, if the performance parameters

1 A survey of organizations by Meta Group found that 89% collected no performance
measurements on their IT projects apart from financial information – like flying a plane
by monitoring the rate of fuel burn. (‘The Business of IT Portfolio Management:
Balancing Risk, Innovation and ROI’. Technical Report, Meta Group, Stamford, CT,
USA, January 2002.)

Managing

guesswork

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

are gathered on completed projects, an organization can set up its own estimating
method or can use them to calibrate a standard method or package.

Performance improvement and benchmarking. These three basic
performance parameters can be used to guide a performance improvement
programme and for ‘benchmarking’, that is comparing performance e.g. across
suppliers and across projects using different technologies. A good benchmark
analysis should help managers understand the potential for improvement and
where to take action.

Measurement is not essential for initial performance improvement. You can
always start improving by simply eliminating obvious bad practice. But without
measurements, in the long-term it will be impossible to know if improvement
activities are actually yielding positive results, and if not, why.

Indeed, the quantitative management achieved by high-maturity software
development organizations (e.g. those achieving CMMI® maturity levels four
and five, or ‘Six Sigma’ equivalent performance) requires intimate knowledge of
process performance and variation. This depends on the implementation and
institutionalization of efficient measurement methods that provide effective,
timely feedback as the basis for decision-making.

As an example, recently there has been much discussion about the benefits of
adopting ‘RAD’ (Rapid Application Development), ‘agile’ or even ‘XP’
(Extreme Programming) project management processes. Such processes provide
the obvious benefit of delivering functionality earlier to a client than traditional
‘waterfall’ project management processes and they should help reduce risk. But
without measurements, there will be no understanding of the productivity (hence
of the cost) or quality of the earlier delivery and of whether the trade-off of cost
versus speed over the life of the project is really optimal for the circumstances.
Moreover, measuring the whole lifetime cost of the software products, i.e.
including on-going maintenance and support costs, will reveal if any further
trade-off had been made between the initial speed of development and the
lifetime costs. Without such data, the customer will not understand the full
implications of the initial development approach.

The fact is that few organizations have any form of long-running software
metrics programme. It should be that any metrics programme is better than none,
but that’s also not true. Many programmes start, fail to deliver benefits, and are
cancelled.

Howard Rubin, Senior Advisor to the Gartner, a benchmarking company, carried
out research over many years that showed that software metrics programmes
typically lasted three years and were then killed off. He recently confirmed at the
2006 UKSMA conference that in his experience the life of metrics programmes
seems be getting shorter. They are often cancelled when a new IT Director
arrives and can see no benefits from the existing measurement programme. This
would not happen if the metrics were credible, useful and used. Later in this
paper we will examine why metrics programmes typically lack credibility and
what must be done to achieve credibility.

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

First we will examine what could be the economic benefits from the adoption and
long-term successful use of software metrics.

Quantifying the benefits of a credible software
metrics programme
A credible long-term software metrics programme should deliver clear benefits.
As a minimum it should support performance-improvement activities and help
improve estimating.

Apportioning the benefits of succeeding with both these activities between the
contributions of a software metrics programme and all the other activities needed
to improve performance and estimating requires certain assumptions. The
following is a very simple analysis based on some crude input data and
conservative (in the author’s judgment) assumptions. Our aim is merely to point
to the orders of magnitude of potential gains.

Let us first consider the contribution that successful software metrics
programmes could make to the benefits of performance improvement activities
for the UK software industry.

According to the report ‘Survey-based measures of software investment in the
UK’ published by the Office of National Statistics in February 2006, the UK
spends about £20 Billion per annum on software. We first assume that only half
of this investment, i.e. £10B pa, could be impacted by the sort of software
metrics we have been discussing. (The other 50% would include algorithm-rich
software, software that processes audio or video data, investment in infrastructure
software e.g. for the desktop in ‘small office/home office’ installations, and much
minor software maintenance. For such situations, either metrics will not help
much due to the highly creative work-content or lack of repeatable processes, or
people will not bother to measure for small tasks.)

Assume that the UK software industry invested in performance improvement and
could double productivity over, say, ten years, a not unreasonable target
considering the gap in price-performance between e.g. the UK and India and
other evidence (see A Cross Section of Supporting Evidence - below).

Almost all branches of UK Government and much of British industry now set
performance improvement targets for their major activities. There is no reason to
exclude the software industry from quantifying its targets and measuring its
progress towards such targets. Indeed, as software is now so ubiquitous, and so
much of modern society is dependent upon it, there is an argument that says that
improving the software process should be a high priority, as an enabler to
performance improvement in other, dependent domains.

Most of the improvement would have to come from adopting better processes
and technology, at considerable cost – adding in the order of 7% pa to software
costs, according to typical estimates. We can assume the contribution of
software metrics to making such a programme succeed, as follows.

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

Assume the metrics programme’s share of the benefits of the overall performance
improvement is proportional to its share of the costs of the performance
improvement activities, say 10% of these costs. The benefits attributable to the
metrics programme would therefore be worth in the order of 10% of the average
improvement over 10 years, where the latter is £4.3B pa, net of the improvement
costs. On average the benefits of metrics are therefore worth £430M pa, or 4.3%
of the current annual software investment. (For simplicity, we ignore complex
issues such as whether the benefits are used to reduce costs for the same output,
or to increase output for the same costs, the effects of the competition improving
its performance over the period thus negating some of the gains, the effects of the
cost of money and cash flow, etc. The aim is merely to indicate orders of
magnitude.)

The second impact of software metrics should be to help improve estimating.
This impact is independent of the above. The analysis below draws partly on the
widely-quoted Standish CHAOS report, whose findings we assume apply equally
to the UK.

The report (see www.standishgroup.com/press/article.php?id=2) says that in the
USA in 2003:

 34% of projects were 'successful'
 51% were 'challenged', i.e. they failed to deliver within 10% of budget or

time and/or failed to deliver all the promised requirements. On average
these challenged projects over-ran on cost by 43% of their original
budget

 15% were 'failures', i.e. they were cancelled before delivering anything.
These projects wasted 15% of the $250B spent on software in the US, so
it's the bigger projects that have the higher failure rates, as might be
expected.

(It’s interesting to note that the Financial Times of 1st December 2006 quotes Joe
Harley, CIO of the UK Department for Work and Pensions as saying that only
30% of UK Government IT projects deliver on time and budget – very close to
the Standish figure for ‘successful’ projects.)

To quantify the effect of improved estimating, we draw on the ideas of Abdel
Hamid and Madnick2: They argued that the least cost for a software development
project will arise from the most accurate estimate.

If a project is initially over-estimated, a variant of Parkinson’s Law tells us that
'work expands to use up the available budget'. So a customer will spend more
money than is really necessary and if there is an external supplier of the software,
they will make excessive profit.

Alternatively, if a project is initially under-estimated, Abdel-Hamid and Madnick
would argue that the costs would have been lower if they had been correctly
estimated in the first place. More accurate estimating must give rise to better

2 The elusive silver lining: how we fail to learn from software development failures’,
Abdel-Hamid, Madnick, Sloan Management Review, Fall 1990

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

initial allocation of resources, whilst adding resources to a late-running or over-
budget project is more expensive than if allocated correctly at the outset.

The Standish data indicates that 66% (15% + 51%) of projects seriously under-
estimated the effort required. It must also be the case that some proportion of the
34% of ‘successful’ projects was initially over-estimated and could have been
delivered at less cost.

If proper project effort estimates were made (often the approach is little better
than guesswork), or the accuracy of estimates that were made could be improved,
then the following benefits would accrue.

 For projects that are over-estimated, the saving from having an estimate
that is, for example 10% more accurate, is actually 10% of the project
cost. So the benefits from not over-estimating are potentially very
significant – and this conclusion is supported by the evidence given
below. But as we wish to estimate our benefits conservatively and do not
know what proportion of projects are initially over-estimated, we will
ignore altogether the possible benefits of better estimating for this
particular group

 For projects which are initially over-estimated and which do not go
ahead because the business case is not so good, maybe some potentially
good investment opportunities are missed. The size of this group is also
difficult to quantify, so again we will ignore this possible source of
benefits.

 Now consider those projects that are initially under-estimated but do
continue to completion and deliver something. For this ‘challenged’
group (roughly half of all projects) which over-ran on costs on average
by 43%, more accurate estimates should easily save 5% of total costs.
The benefits of improved estimating for this group would then be £110M
pa (5% of 51% of 43% of £10B, assuming the 51% proportion of
projects is also the proportion of their costs).

 Projects that are cancelled, never delivering anything, must have done so
because the cost turns out to be much higher than anticipated or some
other failure reason. These are the 15% of all projects (15% of costs)
according to the Standish report. Obviously a high proportion of these
failures were not due just to poor estimating, but if the project team had
done a good job on estimating, that would imply good requirements and
this would have been a good starting point, with reduced risk of failure.
It is reasonable to assume that better estimating in this group alone would
also account for at least 5% of the wasted software investment due to
lower failure rates. The benefits of improved estimating for this group
would then be £75M pa (5% of 15% of £10B)

This analysis tells us that the various benefits (which are independent and can
therefore be added up) attributable to better estimating would be in the region of
£185M pa, or nearly 2% of the annual UK investment in software that could
benefit from use of metrics.

Note that the overall benefits from the targeted level of performance
improvement would be worth several £Billion pa and that it is inconceivable that
this improvement could be obtained without a serious investment in metrics. The

Combining the benefits due

directly to metrics from their

contribution to performance

improvement (£430M) and to

estimating (£185M) suggests

the total benefits from

establishing successful

software metrics programmes

would be in the region of

£600M pa, or 6% of total

software investment for the

UK software industry.

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

indirect benefits of using metrics successfully, (obviously combined with other
equally vital investments such as in improved processes, technology, training,
etc) are therefore far greater.

Of course, many of the very large software suppliers do have significant software
metrics programmes, so some must be already gaining these benefits. But the
Standish Group’s statistics show the net state of the industry’s performance,
which must include those organizations that do succeed in using metrics to
manage their activities successfully. And we know that even the big players
suffer horror stores from time to time. It is therefore safe to assume that these
estimates are of net potential benefits that are ‘out there’, still to be harvested.

Critical Success Factors (CSF’s) for a credible
software metrics programme and the
importance of the COSMIC-FFP method of
sizing software
CSF’s are the few things you must get right for success in any activity, or it will
fail. For a software metrics programme these are as follows:

a. The metrics gathered must be aligned with the software-producing
organization’s goals

b. The metrics must be credible to the project teams and to management
c. The metrics activity must be seen as complementary to the project

processes, not an activity on the side that hinders project progress, and
the effort for the metrics must be acceptable within the project budget

d. The organization must be reasonably stable and have certain disciplines
such as reasonably repeatable processes and a limited range of
technologies (so that performance can be measured on comparable
projects)

e. The metrics programme must be used by management to help the
organization improve performance over a long period – not to punish or
reward individual project performance.

It is imperative that all five CSF’s receive attention. Failure on any one CSF will
mean failure of the whole software metrics programme.

Based on the author’s own consulting experience and confirmed by the
observations of Rubin and other colleagues, it is almost certainly true to say that
all major software producers have started a software metrics programme at some
time, but few have lasted more than a few years. The recurrent reason for
cancelling metrics programmes is the failure of CSF’s b) (credibility) and c)
(complementarity), leading to failure of CSF e) (their use by management).

Time and again, the author has observed that an IT Director receives reports from
the software metrics group that look little better than a collection of random
numbers, that are difficult to interpret and that give very limited guidance on any
action that should be taken. In contrast the computer operations function will
produce regular reports on machine utilization which can be used to tune the
machine’s performance and to forecast accurately when upgrades are needed.

So why doesn’t most of the

software industry invest in

software metrics and seek to

obtain these benefits from

performance improvement

and estimating?

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

This comparison is a somewhat unfair because the computer operations reports
are always produced from data gathered automatically by the machines, whereas
the software performance metrics are inevitably gathered by rather laborious
manual processes. But the latter aspect does not explain the usual poor quality of
the metrics. If a new IT Director does not have a strong IT background and has
been parachuted in for a spell of career development (which seems to happen all
the time), then little surprise if he or she soon sees an opportunity to save money
and scrap the metrics activity.

So why do software metrics lack credibility? Consider the three key performance
parameters of productivity, speed of delivery and defect density (a measure of
quality). All depend on having a measure of ‘size’ of the software delivered and,
in the case of productivity, – usually the most important measure – a measure of
project effort.

Now although everyone understands what is meant by ‘project effort’, it turns out
to be very difficult to measure in a consistent way across multiple projects.
There are many good reasons for this (difficulties of definition, etc). And there
are bad reasons, principally that project teams tend not to take effort recording
very seriously. Especially if they do not know what the data will be used for.

Getting reliable and consistent measures of project effort, whilst difficult, can be
done. But measuring a size of the developed software – a measure of work-
output – has always depended on methods that are intrinsically weak, at best.
They are particularly difficult to explain to a new IT Director who has no
background in the evolution of software engineering principles over the last 30
years.

The two principle approaches to measuring a software size have been to count
the number of lines of source code produced by a project (which depends on the
technology used) or to attempt to measure the size of the functionality of the
software (which should be independent of the technology and thus far more
useful). Unfortunately, the most common ‘functional size measurement method’,
known as the IFPUG method, is now increasingly difficult to apply to modern
software projects and lacks credibility. The best that can be said for the method
today is that it was a great piece of lateral thinking and that it was a pragmatic,
credible sizing method when it was first developed in the late 1970’s.

In late 1998, COSMIC, the Common Software Measurement International
Consortium, a world-wide group of software metrics experts was formed to
develop a new method of measuring a functional size of software based on
fundamental software engineering principles. The method, known as ‘COSMIC-
FFP’ is now being adopted by major software producers around the world and
has been accepted as an International Standard.

Now, at last the software community has available a credible work-output
measurement method which should enable setting up a credible software metrics
programme and in due course achieving the potential benefits outlined above. So
there is hope that the current lamentable state of software metrics will improve in
the coming years.

In the author’s opinion, this

lack of an accepted measure

of work-output for software

has been the biggest reason

why software metrics have

lacked credibility and been

so little used over the last 10

to 20 years. This weakness

means that CSF’s b) and c)

have not been achievable

and consequently CSF e)

rarely even gets a chance to

be tested.

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

(For those who would like a deeper understanding of the size measurement
methods, there are more detailed accounts on www.cosmicon.com. The
Appendix to this paper also has a table comparing the three size measurement
methods (counting lines of code, the IFPUG method and the COSMIC-FFP
method).

A cross-section of supporting evidence
The purpose of this section is to present a variety of evidence from multiple
sources which supports the theses of this paper that software metrics are poorly
used and that there is enormous potential for benefits to the software industry if
they could be used properly.

Evidence that the potential for software development
productivity is massive
Organizations that collect software project performance data and provide
commercial benchmarking services all seem to show massive variations in
project productivity. We give just two examples.

The International Software Benchmarking Standards Group, a not-for-profit
organization publishes and analyses data submitted voluntarily by organizations
from around the world. Their 2002 analysis reports on the productivity of 97
projects developed using ‘main-frame’ (=large-scale) computers and ‘3GL’
programming languages (i.e. technology that has been around for 30+ years).
The results show a factor x 4 between the boundaries of the lower and upper
quartiles of these projects. The boundaries of the upper and lower deciles of
performance differ by a factor x 10.

QSM, a USA-based commercial benchmarking services, in its 2006 IT Metrics
study reports a factor x 15 difference in ‘best-in-class’ versus ‘worst-in-class’
effort for the same work-output, and a corresponding difference of x 5 in elapsed
time.

With these sorts of findings, setting a target to improve productivity by a factor x
2 over ten years is really rather modest.

Evidence that project estimates are often made on poor
foundations
At the 2006 UKSMA conference a discussion arose about the provision of
contingency amounts when estimating. The comments from software metrics
experts from two very major software producers were interesting.

One had discovered that an analysis of the total effort in all current project
estimates in his organization revealed that 50% of the effort was classified as
‘contingency’.

The other representative was asked ‘how do your project leaders estimate when
asked to do so by a client early in the life of a project, when the requirements are
typically not yet well understood?’ The answer was ‘make the best estimate you
can and add 150% contingency’.

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

The root of this problem is a process issue. Clients, quite reasonably, ask for
estimates early in a project life. But quite unreasonably these estimates set
expectations and are perceived as ‘hard’ far too early in the project. Good
processes have been developed that help match estimates to requirements as they
evolve, whilst maintaining the control of price/performance that the client needs.
But such processes require credible software metrics and are very rarely used.

Evidence that project estimates are rubbish and/or are
ignored by management
Recently a Department of HM Government received two bids from different
suppliers in response to a Request to Tender. One bid estimated a price of £2M;
the second bid estimated £0.25M. We can only conclude that either one of the
bidders is incompetent (or both?) or they are talking about different requirements.
And without proper quantitative methods the client has no way to compare the
bids. At stake here is either an over-spend or a saving of up to £1.75M GBP of
public money and maybe even the costs of yet another IT project failure due to
unrealistic initial estimates.

(This case leads on to the important observation that a software statement of
requirements can only be measured for size and hence used as a basis for effort
estimation if it is free from ambiguity. It follows that the ability to measure a
functional size of a statement of requirements is an extremely valuable check on
the quality of those requirements.)

A City of London financial institution committed to develop a large complex
system without using any systematic approach to sizing or estimating the
development effort, duration or cost. They engaged a number of external
suppliers to build distinct sub-systems and agreed contracts, again without
reference to any process performance or benchmark productivity data. The
development was planned to take 24 months. After many painful mishaps, and
the expenditure of £40M, the project was cancelled. Unofficial estimates of the
size of the requirements, made by project staff but ignored by management,
suggested a functional size of over 100,000 IFPUG function points – indicating a
‘mission-impossible’ project.

Evidence that software project productivity can be
improved
Companies seem reluctant to admit to using software metrics, let alone
acknowledge performance improvements, but here are a few examples

ABB, the Swiss/Swedish engineering company reported in August 2006 as
follows. “ABB started calculating return on investment (ROI) corporate wide in
2003, and the typical ROI for major (software) process changes is 3:1 to 5:1
(benefit to cost of process improvement activities). … The only benefit included
in the ROI calculation is the savings that resulted from the 30 percent reduction
in COPQ [Cost Of Poor Quality]. Amortizing the benefits over only one year, the
unit achieved a 2:1 return on investment (ROI).”

Northrup Grumman Electronic Systems reported in August 2006. ”The average
gain in productivity that we have experienced during the past 5 years as we have
moved from CMMI® maturity Level 3 to 4 is approximately 20 percent annually.

Amortizing the benefits

over only one year, the

unit achieved a 2:1

return on investment

(ROI)

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

During our static years, our nominal gain was 10 percent annually. We can
thereby conclude that we have accelerated our gain by 10 percent a year based
upon a strategy that was heavily Software Process Improvement based. Such
acceleration results in a cost avoidance averaging $25 million annually over a
five-year investment time span.”

Evidence that use of software metrics can make a
difference
Rubin presented evidence from Gartner on IT expenditure at the UKSMA 2006
conference. Currently, as a percentage of operating expenses, companies spend
in the range of 2% (manufacturing) to 10% (banking) on IT. Of this IT
expenditure, on average about 60% is spent on ‘run the business’ and about 40%
on ‘grow and transform the business’. Rubin’s data showed, however, that
businesses that use measurement, especially software metrics, more typically
spend less than 50% of their IT budget on ‘run the business’, thus leaving more
than 50% on ‘grow and transform’. The benefits of metrics therefore extend way
beyond just the performance of the software producers but extend into the
business performance.

IBM (Europe, Middle East and Africa) made the following statement at the
European SEPG conference in 2005. “Measurements provide a balanced view of
delivery performance. Measurements connect goals, behaviour and results,
thereby providing a path for improvement & maturity over time. Measurements
enhance customer value by providing visibility into accounts’ delivery
performance. Measurements allow practitioners and management to be sure that
their actions are effective.”

Evidence that some people are waking up to the
importance of measurement
The UK House of Commons Defence Committee HC 572 Session 2003/4, 28
July 2004 into MOD acquisition (including the acquisition of software-intensive
systems) concluded that “loose approximations suggest 15% of total procurement
spend should be for de-risking”, including more emphasis on the early stages of
projects. Indeed, two of the seven principles of SMART Acquisition are highly
relevant, namely:

Principle 1. Adopt a whole-life approach, typified by applying through-life
costing techniques

Principle 5. Establish effective trade-offs between system performance, through-
life costs and time.

Some parts of UK Government actually do have a good record of collecting
software metrics, though it is less clear that they have been successful in using
them to drive performance improvement from their suppliers. However, perhaps
things are changing. The Financial Times report of 1st December referred to
above (stating that only 30% of UK Government IT projects are delivered to time
and budget) went on to say that Government Departments have agreed with a
dozen of their principal suppliers to set a target to raise this level to 90% over the
next four years.

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

Conclusions
Overall, the claim we have made of a few percent benefit to total software
investment from the exploitation of successful software metrics programmes is
probably quite conservative. Every 1% saving for the UK software industry is
worth £100M per annum, so the rough calculations presented here suggest the
savings for the UK software industry could be several £100m pa.

And the exploitation of a successful software metrics programme should help
unlock benefits in the order of £ Billions from productivity improvement.

And adopting the COSMIC-FFP method for software size measurement could
make the difference between success and failure of a software metrics
programmes.

So why hesitate?

Acknowledgements
The author is extremely grateful to Grant Rule of Software Measurement
Services Ltd, and to Professor Alain Abran of the École de Technologie
Supérieure - Université du Québec, Montréal, joint leader of the COSMIC
project, for their helpful contributions to this paper. I am also grateful for
feedback and comments supplied by participants at the UK Software Metrics
Association 2006 conference where an early version of this paper was presented.

1% saving per annum

COSMIC could make the

difference between success

& failure

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

Appendix A comparison of software size
measurement methods
The table below shows how the two most commonly used software size metrics
compare with using the COSMIC-FFP functional size measure.

Critical Success
Factor

Counts of
Source Lines of
Code

IFPUG Function
Points

COSMIC-FFP

b) Credibility of the
size metric

- Used only for real-
time and embedded
software
- Rules for line-
counting vary
enormously.
- The size measure is
precise, but depends
on the programming
language.
- Conversion ratios
between languages are
questionable
- Limited relationship
to size of functional
requirements

- Mostly used only for
business application
software.
- Based on a
pragmatic model of
IBM software in the
late 1970’s
- Lacks credibility for
large complex
projects due to the
limited size scale (the
measure is a non-
linear, ordinal scale)

- Designed to
measure both
business application
and real-time
software, in multi-
tier, multi-layered
architectures
 - Based on
fundamental
software engineering
concepts and
measurement
principles
- Provides a linear,
ratio scale of
measurement

c) Size metric is
complementary to
project processes

Acceptable effort for
size measurement

- Can be measured
accurately when a
project is finished.
- Can only be
‘guestimated’ from
requirements, hence
limited value for
project estimating,
especially early in the
project
- Size depends on skill
and expertise of the
programmers; ‘better’
programmers produce
‘tighter’ code, hence
fewer SLOC, so
appear to have lower
productivity

- Measurement of
completed software
can be automatic

- The method’s basic
concepts date from the
late 1970’s and now
have limited relevance
to modern practice in
requirements
engineering and
software
development. Hence
measurement is
separate from project
processes

- Measurement is
manual but with
acceptable effort

- The method’s basic
concepts are aligned
with modern
software engineering
methods such as
UML, but
independent of any
one method
- So measurement
can be embedded in
typical software
development
practices,
minimizing the cost
of data collection
- Measuring using
CFFP also provides
excellent Quality
Control of
requirements

- Measurement is
manual but with
acceptable effort
- Measurement may
be automatable if
model-driven
software engineering
principles are
adhered to

Our conclusion from this table is that using the COSMIC-FFP method can make
the difference between a credible software metrics programme and one that will

Software Measurement Services Ltd

White Paper Copyright © 2006 Software Measurement Services Ltd

fail and be abandoned. This, in turn, feeds the fifth CSF, which means that the
metrics programme should be sustainable over a long period.

………………..

Author Biography

Charles Symons is joint project-leader of the COmmon
Software Measurement Consortium, a team of software
measurement experts from Europe, North America and
Asia/Pacific. The Consortium developed the COSMIC-
FFP method to measure the functional size of real-time,
multi-layered software such as used in telecoms, process
control, and operating systems, as well as business
application software, all on the same measurement scale.
Such wide applicability is unique and a break-though for

the world of software project performance measurement and estimating.

The COSMIC-FFP method has progressed from the germ of an idea to approval
as an International Standard in the extremely short time of four years. The
method has been extensively tested and is now becoming increasingly used,
especially in the real-time world. It is compatible with modern specification
methods such as UML, and with OO techniques.

After a working life covering all the major disciplines of the Information Systems
function, Charles Symons is now semi-retired. His extensive experience in both
public and private sectors informs his continuing work in promoting the
COSMIC method as a measurement technique designed for the 21st century.

……………………………………………………………………………………..

Software Measurement Services is a specialist, independent UK consultancy working with decision-
makers in blue-chip companies and government departments to improve the results delivered by the
development of software and computer systems. Our consultants are at the forefront of developing
and supporting best practice in managing software process performance.

For more on the COSMIC-FFP method, see www.cosmicon.com and/or contact your local member of
the COSMIC International Advisory Committee, whose e-mail address is given on the ‘cosmic’ site.

Article Copyright © Charles Symons
White Paper Copyright © Software Measurement Services Ltd.
……………………………………………………………………………………..

Software Measurement Services Ltd
124 High Street
Edenbridge
Kent
TN8 5AY

T: +44 (0) 1732 863 760 F: +44 (0) 0732 864 996

http://www.measuresw.com
sales@measuresw.com

